Roles of basolateral solute uptake via NKCC1 and of myosin II in vasopressin-induced cell swelling in inner medullary collecting duct.
نویسندگان
چکیده
Collecting duct cells swell when exposed to arginine vasopressin (AVP) in the presence of a transepithelial osmolality gradient. We investigated the mechanisms of AVP-induced cell swelling in isolated, perfused rat inner medullary collecting ducts (IMCDs) using quantitative video microscopy and fluorescence-based measurements of transepithelial water transport. We tested the roles of transepithelial water flow, basolateral solute entry, and the cytoskeleton (actomyosin). When a transepithelial osmolality gradient was imposed by addition of NaCl to the bath, AVP significantly increased both water flux and cell height. When the osmolality gradient was imposed by addition of mannitol, AVP increased water flux but not cell height, suggesting that AVP-induced cell swelling requires a NaCl gradient and is not merely dependent on the associated water flux. Bumetanide (Na-K-2Cl cotransporter inhibitor) added to the bath markedly diminished the AVP-induced cell height increase. AVP-induced cell swelling was absent in IMCDs from NKCC1-knockout mice. In rat IMCDs, replacement of Na, K, or Cl in the peritubular bath caused significant cell shrinkage, consistent with a basolateral solute transport pathway dependent on all three ions. Immunocytochemistry using an antibody to NKCC1 confirmed basolateral expression in IMCD cells. The conventional nonmuscle myosin II inhibitor blebbistatin also diminished the AVP-induced cell height increase and cell shape change, consistent with a role for the actin cytoskeleton and myosin II. We conclude that the AVP-induced cell height increase is dependent on basolateral solute uptake via NKCC1 and changes in actin organization via myosin II, but is not dependent specifically on increased apical water entry.
منابع مشابه
Vasopressin regulation of the renal UT-A3 urea transporter.
Facilitative urea transporters in the mammalian kidney play a vital role in the urinary concentrating mechanism. The urea transporters located in the renal inner medullary collecting duct, namely UT-A1 and UT-A3, are acutely regulated by the antidiuretic hormone vasopressin. In this study, we investigated the vasopressin regulation of the basolateral urea transporter UT-A3 using an MDCK-mUT-A3 ...
متن کاملApical membrane limits urea permeation across the rat inner medullary collecting duct.
UNLABELLED Urea diffuses across the terminal inner medullary collecting duct (IMCD) via a facilitated transport pathway. To examine the mechanism of transcellular urea transport, membrane-apparent urea (Purea) and osmotic water (Pf) permeabilities of IMCD cells were measured by quantitative light microscopy in isolated IMCD-2 tubules perfused in the absence of vasopressin. Basolateral membrane ...
متن کاملContribution of the Na+-K+-2Cl- cotransporter NKCC1 to Cl- secretion in rat OMCD.
In rat kidney the "secretory" isoform of the Na+-K+-2Cl- cotransporter (NKCC1) localizes to the basolateral membrane of the alpha-intercalated cell. The purpose of this study was to determine whether rat outer medullary collecting duct (OMCD) secretes Cl- and whether transepithelial Cl- transport occurs, in part, through Cl- uptake across the basolateral membrane mediated by NKCC1 in series wit...
متن کاملProteomic analysis of long-term vasopressin action in the inner medullary collecting duct of the Brattleboro rat.
Vasopressin regulates water and solute transport in the renal collecting duct. In addition to short-term regulation of aquaporin-2 trafficking, vasopressin also has long-term effects to regulate the abundances of aquaporins-2 and -3 and beta- and gamma-subunits of the epithelial sodium channel in collecting duct principal cells. To investigate further the direct and indirect long-term regulator...
متن کاملAngiotensin II increases vasopressin-stimulated facilitated urea permeability in rat terminal IMCDs.
Angiotensin II receptors are present along the rat inner medullary collecting duct (IMCD), although their physiological role is unknown. Because urea is one of the major solutes transported across the terminal IMCD, we measured angiotensin II's effect on urea permeability. In the perfused rat terminal IMCD, angiotensin II had no effect on basal urea permeability but significantly increased vaso...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 295 1 شماره
صفحات -
تاریخ انتشار 2008